Definitions and key facts for section 5.1

An eigenvector of an $n \times n$ matrix A is a nonzero vector \mathbf{x} such that $A \mathbf{x}=\lambda \mathbf{x}$, for some scalar λ. A scalar λ is called an eigenvalue of A if there is a nontrivial solution \mathbf{x} of $A \mathbf{x}=\lambda \mathbf{x}$; such an \mathbf{x} is called an eigenvector corresponding to λ.

If λ is an eigenvalue of A, then the set of all solutions (including $\mathbf{0}$) to

$$
(A-\lambda I) \mathbf{x}=\mathbf{0}
$$

is the eigenspace of A corresponding to λ.
Fact: The eigenspace of A corresponding to λ is a subspace of \mathbb{R}^{n}. Indeed, it is

$$
\operatorname{Nul}(A-\lambda I)=\left\{\mathbf{x} \text { in } \mathbb{R}^{n}:(A-\lambda I) \mathbf{x}=\mathbf{0}\right\}
$$

Facts about eigenvalues:

1. The eigenvalues of a triangular matrix are the entries on its main diagonal.
2. If $\mathbf{v}_{1}, \ldots, \mathbf{v}_{r}$ are eigenvectors that correspond to distinct eigenvalues $\lambda_{1}, \ldots, \lambda_{r}$ of an $n \times n$ matrix A, then the set $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{r}\right\}$ is linearly independent.
