Definitions and key facts for section 5.1

An **eigenvector** of an $n \times n$ matrix A is a *nonzero* vector \mathbf{x} such that $A\mathbf{x} = \lambda \mathbf{x}$, for some scalar λ . A scalar λ is called an **eigenvalue** of A if there is a nontrivial solution \mathbf{x} of $A\mathbf{x} = \lambda \mathbf{x}$; such an \mathbf{x} is called an *eigenvector* corresponding to λ .

If λ is an eigenvalue of A, then the set of all solutions (including **0**) to

 $(A - \lambda I)\mathbf{x} = \mathbf{0}$

is the **eigenspace** of A corresponding to λ .

Fact: The eigenspace of A corresponding to λ is a *subspace* of \mathbb{R}^n . Indeed, it is

$$\operatorname{Nul}(A - \lambda I) = \{ \mathbf{x} \text{ in } \mathbb{R}^n : (A - \lambda I)\mathbf{x} = \mathbf{0} \}.$$

Facts about eigenvalues:

- 1. The eigenvalues of a triangular matrix are the entries on its main diagonal.
- 2. If $\mathbf{v}_1, \ldots, \mathbf{v}_r$ are eigenvectors that correspond to distinct eigenvalues $\lambda_1, \ldots, \lambda_r$ of an $n \times n$ matrix A, then the set $\{\mathbf{v}_1, \ldots, \mathbf{v}_r\}$ is linearly independent.